Difference Between Anabolism and Catabolism

Difference Between Anabolism and Catabolism

Anabolism and catabolism are the sets of metabolic processes,
which are collectively identified as metabolism. Anabolism is
the set of reactions involved in the synthesis of complex
molecules, starting from the small molecules inside the body.
Catabolism is the set of reactions involved in the breakdown
of complex molecules like proteins, glycogen, and
triglycerides into simple molecules or the monomers like
amino acids, glucose, and fatty acids respectively. The main
difference between anabolism and catabolism is that anabolism is a constructive process and the catabolism is a
destructive process.
This article explains,
1. What is Anabolism
– Definition, Processes, Stages, Function
2. What is Catabolism
– Definition, Processes, Stages, Function
3. What is the difference between Anabolism and Catabolism
EXPLORE  Type here to search… 
Live There with Airbnb
Sign up now
From bedrooms to apartments
to villas – Airbnb has it all.
airbnb.com
EXPLORE 
3/25/2017 Difference Between Anabolism and Catabolism | Definition, Processes, Stages, Comparison
http://pediaa.com/difference­between­anabolism­and­catabolism/ 2/11
What is Anabolism
EXPLORE 
3/25/2017 Difference Between Anabolism and Catabolism | Definition, Processes, Stages, Comparison
http://pediaa.com/difference­between­anabolism­and­catabolism/ 3/11
The set of reactions which synthesizes complex molecules, starting from small molecules is known as anabolism.
Thus, anabolism is a constructive process. Anabolic reactions require energy in the form of ATP. They are considered
as endergonic processes. The synthesis of complex molecules builds up tissues and organs by a step­by­step process.
These complex molecules are required for the growth, development, and differentiation of cells. They increase the
muscle mass and mineralizes the bones. Many hormones like insulin, growth hormone and steroids are involved in the
process of anabolism.
Three stages are involved in anabolism. During the first stage, precursors like monosaccharides, nucleotides, amino
acids and isoprenoids are produced. Secondly, these precursors are activated using ATP into an active form. Thirdly,
these reactive forms are assembled into complex molecules like polysaccharides, nucleic acids, polypeptides, and
lipids.
Organisms can be divided into two groups depending on their ability to synthesize complex molecules from simple
precursors. Some organisms like plants can synthesize complex molecules in the cell, starting from a single carbon
precursor like carbon dioxide. They are known as autotrophs. Heterotrophs utilize intermediately complex molecules
like monosaccharides and amino acids to synthesize polysaccharides and polypeptides, respectively. On the other
hand, depending on the energy source, organisms can be divided into two groups as phototrophs and chemotrophs.
Phototrophs obtain energy from the sunlight while chemotrophs obtain energy from the oxidation of inorganic
compounds.
Carbon fixation from carbon dioxide is achieved either by photosynthesis or chemosynthesis. In plants, photosynthesis
occurs through light reaction and Calvin cycle. During photosynthesis, glycerate 3­phosphate is produced,
hydrolyzing ATP. Glycerate 3­phosphate is later converted into glucose by gluconeogenesis. The enzyme
glycosyltransferase polymerizes the monosaccharides in order to produce monosaccharides and glycans. An overview
of photosynthesis is shown in figure 1.
EXPLORE 
3/25/2017 Difference Between Anabolism and Catabolism | Definition, Processes, Stages, Comparison
http://pediaa.com/difference­between­anabolism­and­catabolism/ 4/11
Figure 1: Photosynthesis
During fatty acid synthesis, acetyl­CoA is polymerized to form fatty acids. Isoprenoids and terpenes are large lipids
synthesized by the polymerization of isoprene units during mevalonate pathway. During amino acid synthesis, some
organisms are capable of synthesizing essential amino acids. Amino acids are polymerized into polypeptides during
protein biosynthesis. De novo and salvage pathways are involved in synthesizing of nucleotides, which can be then
polymerized to form polynucleotides during DNA synthesis.
What is Catabolism
The set of reactions which breaks down complex molecules into small units is known as catabolism. Thus, catabolism
is a destructive process. Catabolic reactions release energy in the form of ATP as well as heat. They are considered as
exergonic processes. The small units of molecules produced in the catabolism can be either used as precursors in other
anabolic reactions or to release energy by oxidation. Thus, catabolic reactions are considered to produce chemical
energy required by the anabolic reactions. Some cellular wastes like urea, ammonia, lactic acid, acetic acid and carbon
EXPLORE 
3/25/2017 Difference Between Anabolism and Catabolism | Definition, Processes, Stages, Comparison
http://pediaa.com/difference­between­anabolism­and­catabolism/ 5/11
dioxide are also produced during catabolism. Many
hormones like glucagon, adrenaline, and cortisol are
involved in catabolism.
Depending on the utilization of organic compounds either
as the carbon source or electron donor, organisms are
classified as heterotrophs and organotrophs, respectively.
Heterotrophs break down monosaccharides like
intermediate complex, organic molecules in order to
generate the energy for cellular processes. Organotrophs
break down organic molecules in order to produce
electrons, which can be used in their electron transport
chain, generating ATP energy.
Macromolecules like starch, fats, and proteins from the diet are taken up and broken down into small units like
monosaccharides, fatty acids, and amino acids respectively during digestion by digestive enzymes. Monosaccharides
are then used in the glycolysis to produce acetyl­CoA. This acetyl­CoA is used in the citric acid cycle. ATP is
produced by the oxidative phosphorylation. Fatty acids are used to produce acetyl­CoA by beta oxidation. Amino
acids are either reused in the synthesis of proteins or oxidized into urea in the urea cycle. The process of cellular
respiration, containing glycolysis, citric acid cycle, and oxidative phosphorylation is shown in figure 2.
EXPLORE 
3/25/2017 Difference Between Anabolism and Catabolism | Definition, Processes, Stages, Comparison
http://pediaa.com/difference­between­anabolism­and­catabolism/ 6/11
Figure 2: Cellular Respiration
Difference Between Anabolism and Catabolism
Definition
Anabolism: Anabolism is the metabolic process where simple substances are synthesized into complex molecules.
Catabolism: Catabolism is the metabolic process which breaks down large molecules into smaller molecules.
Role in Metabolism
Anabolism: Anabolism is the constructive phase of metabolism.
Catabolism: Catabolism is the destructive phase of metabolism.
Energy Requirement
Anabolism: Anabolism requires ATP energy.
EXPLORE 
3/25/2017 Difference Between Anabolism and Catabolism | Definition, Processes, Stages, Comparison
http://pediaa.com/difference­between­anabolism­and­catabolism/ 7/11
Catabolism: Catabolism releases ATP energy.
Heat
Anabolism: Anabolism is an endergonic reaction.
Catabolism: Catabolism is an exergonic reaction.
Hormones
Anabolism: Estrogen, testosterone, growth hormone, insulin, etc. are involved in anabolism.
Catabolism: Adrenaline, cortisol, glucagon, cytokines, etc. are involved in catabolism.
Oxygen Utilization
Anabolism: Anabolism is anaerobic; it does not utilize oxygen.
Catabolism: Catabolism is aerobic; it utilizes oxygen.
Effect on the Body
Anabolism: Anabolism increases the muscle mass. It forms, repairs and furnishes the tissues.
Catabolism: Catabolism burns fat and calories. It uses up the stored food in order to generate energy.
Functionality
Anabolism: Anabolism is functional at resting or sleeping.
Catabolism: Catabolism is functional at body activities.
Energy Conversion
Anabolism: Kinetic energy is converted into potential energy during anabolism.
Catabolism: Potential energy is converted into kinetic energy during catabolism.
Processes
Anabolism: Anabolism occurs during photosynthesis in plants, protein synthesis, glycogen synthesis and assimilation
in animals.
EXPLORE 
3/25/2017 Difference Between Anabolism and Catabolism | Definition, Processes, Stages, Comparison
http://pediaa.com/difference­between­anabolism­and­catabolism/ 8/11
Catabolism: Catabolism occurs during cellular respiration, digestion, and excretion.
Examples
Anabolism: The synthesis of polypeptides from amino acids, glycogen from glucose and triglycerides from fatty
acids are examples for the anabolic processes.
Catabolism: The breakdown of proteins into amino acids, glycogen into glucose and triglycerides into fatty acids are
examples for catabolic processes.
Conclusion
Anabolism and catabolism can be collectively called as the metabolism. Anabolism is a constructive process which
utilizes energy in the form of ATP. It occurs during processes such as photosynthesis, protein synthesis, glycogen
synthesis. Anabolism stores the potential energy in the body, increasing the body mass. Catabolism is a destructive
process which releases the ATP which can be used during the anabolism. It burns the stored complex molecules,
reducing the body mass. The main difference between anabolism and catabolism is the type of reactions involved in
the two processes.

Tell us about your thoughtsWrite message

Your email address will not be published. Required fields are marked *

Back to Top
Close Zoom
Context Menu is disabled by theme settings.